math: Difference between revisions

From RPTools Wiki
Jump to navigation Jump to search
No edit summary
(updated example to show full function using atan2_r)
Line 8: Line 8:


|usage=
|usage=
<syntaxhighlight lang="mtmacro" line>
<source lang="mtmacro" line>
Numbers:
Numbers:
[r:val = math.pi()]
[r:val = math.pi()]
Line 57: Line 57:
[r:val = math.mod(dividend, divisor)]  
[r:val = math.mod(dividend, divisor)]  


</syntaxhighlight>
</source>


|examples=<nowiki></nowiki>
|examples=<nowiki></nowiki>
====abs====
====abs====
<syntaxhighlight lang="mtmacro" line>
<source lang="mtmacro" line>
[r:val =  math.abs(-3)]
[r:val =  math.abs(-3)]
</syntaxhighlight>
</source>
Returns: 3.0
Returns: 3.0


====atan2_r====
====atan2_r====
<syntaxhighlight lang="mtmacro" line>
<source lang="mtmacro" line>
<!-- getFacingToTarget(sourceId,targetId,degreeRound): facing
  sourceId - tokenId of source
  targetId - tokenId of target
  degreeRound - (opt) round to the nearest degree increment, defaults to 1
 
  Return the facing from a source token to a target token, center to center
-->
[H: sourceId = arg(0)]
[H: targetId = arg(1)]
[H, if(argCount() >= 3): degreeRound = arg(2); degreeRound = 1]
 
<!-- calculate angle from center of source to center of target -->
<!-- calculate angle from center of source to center of target -->
[H: x1 = getTokenX(1,sourceId) + round(getTokenWidth(sourceId)/2)]
[H: x1 = getTokenX(1,sourceId) + round(getTokenWidth(sourceId)/2)]
Line 74: Line 85:
[H: y2 = getTokenY(1,targetId) + round(getTokenHeight(targetId)/2)]
[H: y2 = getTokenY(1,targetId) + round(getTokenHeight(targetId)/2)]


<!-- note: reversed y1 and y2 in formulas to represent inverted MapTool coordinate system on y-axis -->
[H, if(x1 == x2): direction = 90 * min(1,max(-1,y1-y2)); direction = math.atan2_r((y1-y2),(x2-x1)) / Math.pi() * 180]
[H: facing = round(math.atan2_r(y1-y2,x2-x1) / math.pi() * 180)]
[H: facing = degreeRound * round(direction/degreeRound)]
</syntaxhighlight>
[H: macro.return = facing]
</source>
Output range from -179 to 180 degrees.
Output range from -179 to 180 degrees.


Line 82: Line 94:
Returns the result of the modulo operation between the two numbers, which represents the remainder after a division operation.
Returns the result of the modulo operation between the two numbers, which represents the remainder after a division operation.


<syntaxhighlight lang="mtmacro" line>
<source lang="mtmacro" line>
[r: math.mod(14,6)]
[r: math.mod(14,6)]
</syntaxhighlight>
</source>
Returns 2
Returns 2


<syntaxhighlight lang="mtmacro" line>
<source lang="mtmacro" line>
[r: math.mod(10,5)]
[r: math.mod(10,5)]
</syntaxhighlight>
</source>
Returns 0
Returns 0


<syntaxhighlight lang="mtmacro" line>
<source lang="mtmacro" line>
[r: math.mod(-13,4)]
[r: math.mod(-13,4)]
</syntaxhighlight>
</source>
Returns -1
Returns -1


====pow====
====pow====
<syntaxhighlight lang="mtmacro" line>
<source lang="mtmacro" line>
[r:val =  math.pow(2,3)]
[r:val =  math.pow(2,3)]
</syntaxhighlight>
</source>
Returns: 8.0
Returns: 8.0
|also=
|also=

Revision as of 19:24, 18 August 2023

math() Function

Introduced in version 1.4.0.5
This is NOT a single MapTool function but a collection of math functions in MapTool.

Important Note: Some of these functions have similar versions that don't have the math. prefix. These functions may differ slightly from those in implementation and output. For instance, most of these functions return a floating-point number (e.g.: 3.0), so you may find it helpful to surround them with round(), floor(), or ceiling().

Usage

Numbers:
[r:val = math.pi()]
[r:val = math.e()]

Trigonomotry:
[r:val = math.acos(degrees)]
[r:val = math.acos_r(radians)]
[r:val = math.asin(degrees)]
[r:val = math.asin_r(radians)]
[r:val = math.atan(degrees)]
[r:val = math.atan_r(num)] <!-- radians -->
[r:val = math.atan2(y,x)] <!-- degrees -->
[r:val = math.atan2_r(y,x)] <!-- radians -->
[r:val = math.cos(degrees)]
[r:val = math.cos_r(num)]
[r:val = math.sin(degrees)]
[r:val = math.sin_r(num)]
[r:val = math.tan(degrees)]
[r:val = math.tan_r(num)]
[r:val = math.toDegrees(num)]
[r:val = math.toRadians(degrees)]

Power and root:
[r:val = math.sqrt(num)]
[r:val = math.squareroot(num)]
[r:val = math.cbrt(num)]
[r:val = math.cuberoot(num)]
[r:val = math.pow(num1,num2)]

Logarithmic
[r:val = math.log(num)] (this is the log to base e)
[r:val = math.log10(num)]

Pythagorean:
[r:val = math.hypot(num1, num2)]
[r:val = math.hypotenuse(num1, num2)]

Simple operations
[r:val = math.abs(num)]
[r:val = math.ceil(num)]
[r:val = math.floor(num)]
[r:val = math.isEven(num)]
[r:val = math.isInt(num)]
[r:val = math.isOdd(num)]
[r:val = math.max(num1, num2, num2, etc.)]
[r:val = math.min(num1, num2, num2, etc.)]
[r:val = math.mod(dividend, divisor)]

Examples

abs

[r:val =  math.abs(-3)]

Returns: 3.0

atan2_r

<!-- getFacingToTarget(sourceId,targetId,degreeRound): facing
   sourceId - tokenId of source
   targetId - tokenId of target
   degreeRound - (opt) round to the nearest degree increment, defaults to 1
   
   Return the facing from a source token to a target token, center to center
-->
[H: sourceId = arg(0)]
[H: targetId = arg(1)]
[H, if(argCount() >= 3): degreeRound = arg(2); degreeRound = 1]

<!-- calculate angle from center of source to center of target -->
[H: x1 = getTokenX(1,sourceId) + round(getTokenWidth(sourceId)/2)]
[H: y1 = getTokenY(1,sourceId) + round(getTokenHeight(sourceId)/2)]
[H: x2 = getTokenX(1,targetId) + round(getTokenWidth(targetId)/2)]
[H: y2 = getTokenY(1,targetId) + round(getTokenHeight(targetId)/2)]

[H, if(x1 == x2): direction = 90 * min(1,max(-1,y1-y2)); direction = math.atan2_r((y1-y2),(x2-x1)) / Math.pi() * 180]
[H: facing = degreeRound * round(direction/degreeRound)]
[H: macro.return = facing]

Output range from -179 to 180 degrees.

mod

Returns the result of the modulo operation between the two numbers, which represents the remainder after a division operation.

[r: math.mod(14,6)]

Returns 2

[r: math.mod(10,5)]

Returns 0

[r: math.mod(-13,4)]

Returns -1

pow

[r:val =  math.pow(2,3)]
Returns: 8.0

See Also

Some math functions are further documented on their own pages: