math: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
(updated example to show full function using atan2_r) |
||
Line 8: | Line 8: | ||
|usage= | |usage= | ||
< | <source lang="mtmacro" line> | ||
Numbers: | Numbers: | ||
[r:val = math.pi()] | [r:val = math.pi()] | ||
Line 57: | Line 57: | ||
[r:val = math.mod(dividend, divisor)] | [r:val = math.mod(dividend, divisor)] | ||
</ | </source> | ||
|examples=<nowiki></nowiki> | |examples=<nowiki></nowiki> | ||
====abs==== | ====abs==== | ||
< | <source lang="mtmacro" line> | ||
[r:val = math.abs(-3)] | [r:val = math.abs(-3)] | ||
</ | </source> | ||
Returns: 3.0 | Returns: 3.0 | ||
====atan2_r==== | ====atan2_r==== | ||
< | <source lang="mtmacro" line> | ||
<!-- getFacingToTarget(sourceId,targetId,degreeRound): facing | |||
sourceId - tokenId of source | |||
targetId - tokenId of target | |||
degreeRound - (opt) round to the nearest degree increment, defaults to 1 | |||
Return the facing from a source token to a target token, center to center | |||
--> | |||
[H: sourceId = arg(0)] | |||
[H: targetId = arg(1)] | |||
[H, if(argCount() >= 3): degreeRound = arg(2); degreeRound = 1] | |||
<!-- calculate angle from center of source to center of target --> | <!-- calculate angle from center of source to center of target --> | ||
[H: x1 = getTokenX(1,sourceId) + round(getTokenWidth(sourceId)/2)] | [H: x1 = getTokenX(1,sourceId) + round(getTokenWidth(sourceId)/2)] | ||
Line 74: | Line 85: | ||
[H: y2 = getTokenY(1,targetId) + round(getTokenHeight(targetId)/2)] | [H: y2 = getTokenY(1,targetId) + round(getTokenHeight(targetId)/2)] | ||
[H, if(x1 == x2): direction = 90 * min(1,max(-1,y1-y2)); direction = math.atan2_r((y1-y2),(x2-x1)) / Math.pi() * 180] | |||
[H: | [H: facing = degreeRound * round(direction/degreeRound)] | ||
</ | [H: macro.return = facing] | ||
</source> | |||
Output range from -179 to 180 degrees. | Output range from -179 to 180 degrees. | ||
Line 82: | Line 94: | ||
Returns the result of the modulo operation between the two numbers, which represents the remainder after a division operation. | Returns the result of the modulo operation between the two numbers, which represents the remainder after a division operation. | ||
< | <source lang="mtmacro" line> | ||
[r: math.mod(14,6)] | [r: math.mod(14,6)] | ||
</ | </source> | ||
Returns 2 | Returns 2 | ||
< | <source lang="mtmacro" line> | ||
[r: math.mod(10,5)] | [r: math.mod(10,5)] | ||
</ | </source> | ||
Returns 0 | Returns 0 | ||
< | <source lang="mtmacro" line> | ||
[r: math.mod(-13,4)] | [r: math.mod(-13,4)] | ||
</ | </source> | ||
Returns -1 | Returns -1 | ||
====pow==== | ====pow==== | ||
< | <source lang="mtmacro" line> | ||
[r:val = math.pow(2,3)] | [r:val = math.pow(2,3)] | ||
</ | </source> | ||
Returns: 8.0 | Returns: 8.0 | ||
|also= | |also= |
Revision as of 19:24, 18 August 2023
math() Function
• Introduced in version 1.4.0.5
This is NOT a single MapTool function but a collection of math functions in MapTool.
Important Note: Some of these functions have similar versions that don't have the math.
prefix. These functions may differ slightly from those in implementation and output. For instance, most of these functions return a floating-point number (e.g.: 3.0
), so you may find it helpful to surround them with round(), floor(), or ceiling().
Usage
Numbers:
[r:val = math.pi()]
[r:val = math.e()]
Trigonomotry:
[r:val = math.acos(degrees)]
[r:val = math.acos_r(radians)]
[r:val = math.asin(degrees)]
[r:val = math.asin_r(radians)]
[r:val = math.atan(degrees)]
[r:val = math.atan_r(num)] <!-- radians -->
[r:val = math.atan2(y,x)] <!-- degrees -->
[r:val = math.atan2_r(y,x)] <!-- radians -->
[r:val = math.cos(degrees)]
[r:val = math.cos_r(num)]
[r:val = math.sin(degrees)]
[r:val = math.sin_r(num)]
[r:val = math.tan(degrees)]
[r:val = math.tan_r(num)]
[r:val = math.toDegrees(num)]
[r:val = math.toRadians(degrees)]
Power and root:
[r:val = math.sqrt(num)]
[r:val = math.squareroot(num)]
[r:val = math.cbrt(num)]
[r:val = math.cuberoot(num)]
[r:val = math.pow(num1,num2)]
Logarithmic
[r:val = math.log(num)] (this is the log to base e)
[r:val = math.log10(num)]
Pythagorean:
[r:val = math.hypot(num1, num2)]
[r:val = math.hypotenuse(num1, num2)]
Simple operations
[r:val = math.abs(num)]
[r:val = math.ceil(num)]
[r:val = math.floor(num)]
[r:val = math.isEven(num)]
[r:val = math.isInt(num)]
[r:val = math.isOdd(num)]
[r:val = math.max(num1, num2, num2, etc.)]
[r:val = math.min(num1, num2, num2, etc.)]
[r:val = math.mod(dividend, divisor)]
Examples
abs
[r:val = math.abs(-3)]
Returns: 3.0
atan2_r
<!-- getFacingToTarget(sourceId,targetId,degreeRound): facing
sourceId - tokenId of source
targetId - tokenId of target
degreeRound - (opt) round to the nearest degree increment, defaults to 1
Return the facing from a source token to a target token, center to center
-->
[H: sourceId = arg(0)]
[H: targetId = arg(1)]
[H, if(argCount() >= 3): degreeRound = arg(2); degreeRound = 1]
<!-- calculate angle from center of source to center of target -->
[H: x1 = getTokenX(1,sourceId) + round(getTokenWidth(sourceId)/2)]
[H: y1 = getTokenY(1,sourceId) + round(getTokenHeight(sourceId)/2)]
[H: x2 = getTokenX(1,targetId) + round(getTokenWidth(targetId)/2)]
[H: y2 = getTokenY(1,targetId) + round(getTokenHeight(targetId)/2)]
[H, if(x1 == x2): direction = 90 * min(1,max(-1,y1-y2)); direction = math.atan2_r((y1-y2),(x2-x1)) / Math.pi() * 180]
[H: facing = degreeRound * round(direction/degreeRound)]
[H: macro.return = facing]
Output range from -179 to 180 degrees.
mod
Returns the result of the modulo operation between the two numbers, which represents the remainder after a division operation.
[r: math.mod(14,6)]
Returns 2
[r: math.mod(10,5)]
Returns 0
[r: math.mod(-13,4)]
Returns -1
pow
[r:val = math.pow(2,3)]