math: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(21 intermediate revisions by 8 users not shown) | |||
Line 2: | Line 2: | ||
|name=math | |name=math | ||
|version=1.4.0.5 | |version=1.4.0.5 | ||
|description= | |description= | ||
This is NOT a single MapTool function but a collection of math functions in MapTool. | |||
<p /> | |||
'''Important Note''': Some of these functions have similar versions that don't have the <code>math.</code> prefix. These functions may differ slightly from those in implementation and output. For instance, most of these functions return a floating-point number (e.g.: <code>3.0</code>), so you may find it helpful to surround them with {{func|round}}, {{func|floor}}, or {{func|ceiling}}. | |||
|usage= | |usage= | ||
< | <syntaxhighlight lang="mtmacro" line> | ||
Numbers: | |||
[r:val = math.pi()] | |||
[r:val = math.e()] | |||
Trigonomotry: | |||
[r:val = math.acos(degrees)] | [r:val = math.acos(degrees)] | ||
[r:val = math.acos_r(radians)] | [r:val = math.acos_r(radians)] | ||
Line 12: | Line 19: | ||
[r:val = math.asin_r(radians)] | [r:val = math.asin_r(radians)] | ||
[r:val = math.atan(degrees)] | [r:val = math.atan(degrees)] | ||
[r:val = math.atan_r( | [r:val = math.atan_r(num)] <!-- radians --> | ||
[r:val = math.atan2( | [r:val = math.atan2(y,x)] <!-- degrees --> | ||
[r:val = math.atan2_r( | [r:val = math.atan2_r(y,x)] <!-- radians --> | ||
[r:val = math.cos(degrees)] | [r:val = math.cos(degrees)] | ||
[r:val = math.cos_r(num)] | [r:val = math.cos_r(num)] | ||
Line 23: | Line 30: | ||
[r:val = math.toDegrees(num)] | [r:val = math.toDegrees(num)] | ||
[r:val = math.toRadians(degrees)] | [r:val = math.toRadians(degrees)] | ||
Power and root: | |||
[r:val = math.sqrt(num)] | |||
[r:val = math.squareroot(num)] | |||
[r:val = math.cbrt(num)] | |||
[r:val = math.cuberoot(num)] | |||
[r:val = math.pow(num1,num2)] | |||
Logarithmic | |||
[r:val = math.log(num)] (this is the log to base e) | |||
[r:val = math.log10(num)] | |||
Pythagorean: | |||
[r:val = math.hypot(num1, num2)] | |||
[r:val = math.hypotenuse(num1, num2)] | |||
Simple operations | |||
[r:val = math.abs(num)] | [r:val = math.abs(num)] | ||
[r:val = math.ceil(num)] | [r:val = math.ceil(num)] | ||
[r:val = math.floor(num)] | [r:val = math.floor(num)] | ||
[r:val = math.isEven(num)] | [r:val = math.isEven(num)] | ||
[r:val = math.isInt(num)] | [r:val = math.isInt(num)] | ||
[r:val = math.isOdd(num)] | [r:val = math.isOdd(num)] | ||
[r:val = math.max(num1, num2, num2, etc.)] | [r:val = math.max(num1, num2, num2, etc.)] | ||
[r:val = math.min(num1, num2, num2, etc.)] | [r:val = math.min(num1, num2, num2, etc.)] | ||
[r:val = math.mod( | [r:val = math.mod(dividend, divisor)] | ||
</ | </syntaxhighlight> | ||
|examples= | |examples=<nowiki></nowiki> | ||
====abs==== | ====abs==== | ||
< | <syntaxhighlight lang="mtmacro" line> | ||
[r:val = math.abs(-3)] | [r:val = math.abs(-3)] | ||
</ | </syntaxhighlight> | ||
Returns:< | Returns: 3.0 | ||
====atan2_r==== | |||
<syntaxhighlight lang="mtmacro" line> | |||
<!-- getFacingToTarget(sourceId,targetId,degreeRound): facing | |||
sourceId - tokenId of source | |||
targetId - tokenId of target | |||
degreeRound - (opt) round to the nearest degree increment, defaults to 1 | |||
Return the facing from a source token to a target token, center to center | |||
--> | |||
[H: sourceId = arg(0)] | |||
[H: targetId = arg(1)] | |||
[H, if(argCount() >= 3): degreeRound = arg(2); degreeRound = 1] | |||
<!-- calculate angle from center of source to center of target --> | |||
[H: x1 = getTokenX(1,sourceId) + round(getTokenWidth(sourceId)/2)] | |||
[H: y1 = getTokenY(1,sourceId) + round(getTokenHeight(sourceId)/2)] | |||
[H: x2 = getTokenX(1,targetId) + round(getTokenWidth(targetId)/2)] | |||
[H: y2 = getTokenY(1,targetId) + round(getTokenHeight(targetId)/2)] | |||
[H, if(x1 == x2): direction = 90 * min(1,max(-1,y1-y2)); direction = math.atan2_r((y1-y2),(x2-x1)) / Math.pi() * 180] | |||
[H: facing = degreeRound * round(direction/degreeRound)] | |||
[H: macro.return = facing] | |||
</syntaxhighlight> | |||
Output range from -179 to 180 degrees. | |||
====mod==== | ====mod==== | ||
< | Returns the result of the modulo operation between the two numbers, which represents the remainder after a division operation. | ||
[r: | |||
</ | <syntaxhighlight lang="mtmacro" line> | ||
Returns | [r: math.mod(14,6)] | ||
</syntaxhighlight> | |||
Returns 2 | |||
<syntaxhighlight lang="mtmacro" line> | |||
[r: math.mod(10,5)] | |||
</syntaxhighlight> | |||
Returns 0 | |||
<syntaxhighlight lang="mtmacro" line> | |||
[r: math.mod(-13,4)] | |||
</syntaxhighlight> | |||
Returns -1 | |||
====pow==== | ====pow==== | ||
< | <syntaxhighlight lang="mtmacro" line> | ||
[r:val = math.pow(2,3)] | [r:val = math.pow(2,3)] | ||
</ | </syntaxhighlight> | ||
Returns: | Returns: 8.0 | ||
|also= | |||
Some <code>math</code> functions are further documented on their own pages: | |||
<ul><li>[[math.e]]</li><li>[[math.log]]</li></ul> | |||
}} | }} | ||
[[Category:Mathematical Function]] | [[Category:Mathematical Function]] |
Latest revision as of 23:59, 17 April 2024
math() Function
• Introduced in version 1.4.0.5
This is NOT a single MapTool function but a collection of math functions in MapTool.
Important Note: Some of these functions have similar versions that don't have the math.
prefix. These functions may differ slightly from those in implementation and output. For instance, most of these functions return a floating-point number (e.g.: 3.0
), so you may find it helpful to surround them with round(), floor(), or ceiling().
Usage
Numbers:
[r:val = math.pi()]
[r:val = math.e()]
Trigonomotry:
[r:val = math.acos(degrees)]
[r:val = math.acos_r(radians)]
[r:val = math.asin(degrees)]
[r:val = math.asin_r(radians)]
[r:val = math.atan(degrees)]
[r:val = math.atan_r(num)] <!-- radians -->
[r:val = math.atan2(y,x)] <!-- degrees -->
[r:val = math.atan2_r(y,x)] <!-- radians -->
[r:val = math.cos(degrees)]
[r:val = math.cos_r(num)]
[r:val = math.sin(degrees)]
[r:val = math.sin_r(num)]
[r:val = math.tan(degrees)]
[r:val = math.tan_r(num)]
[r:val = math.toDegrees(num)]
[r:val = math.toRadians(degrees)]
Power and root:
[r:val = math.sqrt(num)]
[r:val = math.squareroot(num)]
[r:val = math.cbrt(num)]
[r:val = math.cuberoot(num)]
[r:val = math.pow(num1,num2)]
Logarithmic
[r:val = math.log(num)] (this is the log to base e)
[r:val = math.log10(num)]
Pythagorean:
[r:val = math.hypot(num1, num2)]
[r:val = math.hypotenuse(num1, num2)]
Simple operations
[r:val = math.abs(num)]
[r:val = math.ceil(num)]
[r:val = math.floor(num)]
[r:val = math.isEven(num)]
[r:val = math.isInt(num)]
[r:val = math.isOdd(num)]
[r:val = math.max(num1, num2, num2, etc.)]
[r:val = math.min(num1, num2, num2, etc.)]
[r:val = math.mod(dividend, divisor)]
Examples
abs
[r:val = math.abs(-3)]
Returns: 3.0
atan2_r
<!-- getFacingToTarget(sourceId,targetId,degreeRound): facing
sourceId - tokenId of source
targetId - tokenId of target
degreeRound - (opt) round to the nearest degree increment, defaults to 1
Return the facing from a source token to a target token, center to center
-->
[H: sourceId = arg(0)]
[H: targetId = arg(1)]
[H, if(argCount() >= 3): degreeRound = arg(2); degreeRound = 1]
<!-- calculate angle from center of source to center of target -->
[H: x1 = getTokenX(1,sourceId) + round(getTokenWidth(sourceId)/2)]
[H: y1 = getTokenY(1,sourceId) + round(getTokenHeight(sourceId)/2)]
[H: x2 = getTokenX(1,targetId) + round(getTokenWidth(targetId)/2)]
[H: y2 = getTokenY(1,targetId) + round(getTokenHeight(targetId)/2)]
[H, if(x1 == x2): direction = 90 * min(1,max(-1,y1-y2)); direction = math.atan2_r((y1-y2),(x2-x1)) / Math.pi() * 180]
[H: facing = degreeRound * round(direction/degreeRound)]
[H: macro.return = facing]
Output range from -179 to 180 degrees.
mod
Returns the result of the modulo operation between the two numbers, which represents the remainder after a division operation.
[r: math.mod(14,6)]
Returns 2
[r: math.mod(10,5)]
Returns 0
[r: math.mod(-13,4)]
Returns -1
pow
[r:val = math.pow(2,3)]