math: Difference between revisions

From RPTools Wiki
Jump to navigation Jump to search
(Added atan_r example and fixed arguments for function.)
No edit summary
 
(7 intermediate revisions by 4 users not shown)
Line 8: Line 8:


|usage=
|usage=
<source lang="mtmacro" line>
<syntaxhighlight lang="mtmacro" line>
Numbers:
Numbers:
[r:val = math.pi()]
[r:val = math.pi()]
Line 57: Line 57:
[r:val = math.mod(dividend, divisor)]  
[r:val = math.mod(dividend, divisor)]  


</source>
</syntaxhighlight>


|examples=<nowiki></nowiki>
|examples=<nowiki></nowiki>
====abs====
====abs====
<source lang="mtmacro" line>
<syntaxhighlight lang="mtmacro" line>
[r:val =  math.abs(-3)]
[r:val =  math.abs(-3)]
</source>
</syntaxhighlight>
Returns: 3.0
Returns: 3.0


====atan2_r====
====atan2_r====
<source lang="mtmacro" line>
<syntaxhighlight lang="mtmacro" line>
<!-- getFacingToTarget(sourceId,targetId,degreeRound): facing
  sourceId - tokenId of source
  targetId - tokenId of target
  degreeRound - (opt) round to the nearest degree increment, defaults to 1
 
  Return the facing from a source token to a target token, center to center
-->
[H: sourceId = arg(0)]
[H: targetId = arg(1)]
[H, if(argCount() >= 3): degreeRound = arg(2); degreeRound = 1]
 
<!-- calculate angle from center of source to center of target -->
<!-- calculate angle from center of source to center of target -->
[H: x1 = getTokenX(1,sourceId) + getTokenWidth(sourceId)]
[H: x1 = getTokenX(1,sourceId) + round(getTokenWidth(sourceId)/2)]
[H: y1 = getTokenY(1,sourceId) + getTokenWidth(sourceId)]
[H: y1 = getTokenY(1,sourceId) + round(getTokenHeight(sourceId)/2)]
[H: x2 = getTokenX(1,targetId) + getTokenWidth(targetId)]
[H: x2 = getTokenX(1,targetId) + round(getTokenWidth(targetId)/2)]
[H: y2 = getTokenY(1,targetId) + getTokenWidth(targetId)]
[H: y2 = getTokenY(1,targetId) + round(getTokenHeight(targetId)/2)]


<!-- note: reversed y1 and y2 in formulas to represent inverted MapTool coordinate system on y-axis -->
[H, if(x1 == x2): direction = 90 * min(1,max(-1,y1-y2)); direction = math.atan2_r((y1-y2),(x2-x1)) / Math.pi() * 180]
[H, if(x1 == x2): direction = 90 * min(1,max(-1,y1-y2)); direction = math.atan2_r(y1-y2,x2-x1) / math.pi() * 180]
[H: facing = degreeRound * round(direction/degreeRound)]
[H: facing = round(direction)]
[H: macro.return = facing]
</source>
</syntaxhighlight>
Output range from -179 to 180 degrees.
Output range from -179 to 180 degrees.


Line 83: Line 94:
Returns the result of the modulo operation between the two numbers, which represents the remainder after a division operation.
Returns the result of the modulo operation between the two numbers, which represents the remainder after a division operation.


<source lang="mtmacro" line>
<syntaxhighlight lang="mtmacro" line>
[r: math.mod(14,6)]
[r: math.mod(14,6)]
</source>
</syntaxhighlight>
Returns 2
Returns 2


<source lang="mtmacro" line>
<syntaxhighlight lang="mtmacro" line>
[r: math.mod(10,5)]
[r: math.mod(10,5)]
</source>
</syntaxhighlight>
Returns 0
Returns 0


<source lang="mtmacro" line>
<syntaxhighlight lang="mtmacro" line>
[r: math.mod(-13,4)]
[r: math.mod(-13,4)]
</source>
</syntaxhighlight>
Returns -1
Returns -1


====pow====
====pow====
<source lang="mtmacro" line>
<syntaxhighlight lang="mtmacro" line>
[r:val =  math.pow(2,3)]
[r:val =  math.pow(2,3)]
</source>
</syntaxhighlight>
Returns: 8.0
Returns: 8.0
|also=
|also=

Latest revision as of 23:59, 17 April 2024

math() Function

Introduced in version 1.4.0.5
This is NOT a single MapTool function but a collection of math functions in MapTool.

Important Note: Some of these functions have similar versions that don't have the math. prefix. These functions may differ slightly from those in implementation and output. For instance, most of these functions return a floating-point number (e.g.: 3.0), so you may find it helpful to surround them with round(), floor(), or ceiling().

Usage

Numbers:
[r:val = math.pi()]
[r:val = math.e()]

Trigonomotry:
[r:val = math.acos(degrees)]
[r:val = math.acos_r(radians)]
[r:val = math.asin(degrees)]
[r:val = math.asin_r(radians)]
[r:val = math.atan(degrees)]
[r:val = math.atan_r(num)] <!-- radians -->
[r:val = math.atan2(y,x)] <!-- degrees -->
[r:val = math.atan2_r(y,x)] <!-- radians -->
[r:val = math.cos(degrees)]
[r:val = math.cos_r(num)]
[r:val = math.sin(degrees)]
[r:val = math.sin_r(num)]
[r:val = math.tan(degrees)]
[r:val = math.tan_r(num)]
[r:val = math.toDegrees(num)]
[r:val = math.toRadians(degrees)]

Power and root:
[r:val = math.sqrt(num)]
[r:val = math.squareroot(num)]
[r:val = math.cbrt(num)]
[r:val = math.cuberoot(num)]
[r:val = math.pow(num1,num2)]

Logarithmic
[r:val = math.log(num)] (this is the log to base e)
[r:val = math.log10(num)]

Pythagorean:
[r:val = math.hypot(num1, num2)]
[r:val = math.hypotenuse(num1, num2)]

Simple operations
[r:val = math.abs(num)]
[r:val = math.ceil(num)]
[r:val = math.floor(num)]
[r:val = math.isEven(num)]
[r:val = math.isInt(num)]
[r:val = math.isOdd(num)]
[r:val = math.max(num1, num2, num2, etc.)]
[r:val = math.min(num1, num2, num2, etc.)]
[r:val = math.mod(dividend, divisor)]

Examples

abs

[r:val =  math.abs(-3)]

Returns: 3.0

atan2_r

<!-- getFacingToTarget(sourceId,targetId,degreeRound): facing
   sourceId - tokenId of source
   targetId - tokenId of target
   degreeRound - (opt) round to the nearest degree increment, defaults to 1
   
   Return the facing from a source token to a target token, center to center
-->
[H: sourceId = arg(0)]
[H: targetId = arg(1)]
[H, if(argCount() >= 3): degreeRound = arg(2); degreeRound = 1]

<!-- calculate angle from center of source to center of target -->
[H: x1 = getTokenX(1,sourceId) + round(getTokenWidth(sourceId)/2)]
[H: y1 = getTokenY(1,sourceId) + round(getTokenHeight(sourceId)/2)]
[H: x2 = getTokenX(1,targetId) + round(getTokenWidth(targetId)/2)]
[H: y2 = getTokenY(1,targetId) + round(getTokenHeight(targetId)/2)]

[H, if(x1 == x2): direction = 90 * min(1,max(-1,y1-y2)); direction = math.atan2_r((y1-y2),(x2-x1)) / Math.pi() * 180]
[H: facing = degreeRound * round(direction/degreeRound)]
[H: macro.return = facing]

Output range from -179 to 180 degrees.

mod

Returns the result of the modulo operation between the two numbers, which represents the remainder after a division operation.

[r: math.mod(14,6)]

Returns 2

[r: math.mod(10,5)]

Returns 0

[r: math.mod(-13,4)]

Returns -1

pow

[r:val =  math.pow(2,3)]
Returns: 8.0

See Also

Some math functions are further documented on their own pages: